99re热这里只有精品视频,7777色鬼xxxx欧美色妇,国产成人精品一区二三区在线观看,内射爽无广熟女亚洲,精品人妻av一区二区三区

App下載

【Python】垃圾郵件識別

猿友 2018-08-02 18:54:57 瀏覽數(shù) (8740)
反饋

本文轉載至知乎ID:Charles(白露未晞)知乎個人專欄

下載W3Cschool手機App,0基礎隨時隨地學編程>>戳此了解

導語

利用簡單的機器學習算法實現(xiàn)垃圾郵件識別。

讓我們愉快地開始吧~


相關文件

百度網(wǎng)盤下載鏈接: https://pan.baidu.com/s/1Hsno4oREMROxWwcC_jYAOA

密碼: qa49

數(shù)據(jù)集源于網(wǎng)絡,侵歉刪。


開發(fā)工具

Python版本:3.6.4

相關模塊:

scikit-learn模塊;

jieba模塊;

numpy模塊;

以及一些Python自帶的模塊。


環(huán)境搭建

安裝Python并添加到環(huán)境變量,pip安裝需要的相關模塊即可。

逐步實現(xiàn)

(1)劃分數(shù)據(jù)集

網(wǎng)上用于垃圾郵件識別的數(shù)據(jù)集大多是英文郵件,所以為了表示誠意,我花了點時間找了一份中文郵件的數(shù)據(jù)集。數(shù)據(jù)集劃分如下:

訓練數(shù)據(jù)集:

7063封正常郵件(data/normal文件夾下);

7775封垃圾郵件(data/spam文件夾下)。

測試數(shù)據(jù)集:

共392封郵件(data/test文件夾下)。

(2)創(chuàng)建詞典

數(shù)據(jù)集里的郵件內容一般是這樣的:

首先,我們利用正則表達式過濾掉非中文字符,然后再用jieba分詞庫對語句進行分詞,并清除一些停用詞,最后再利用上述結果創(chuàng)建詞典,詞典格式為:

{"詞1": 詞1詞頻, "詞2": 詞2詞頻...}

這些內容的具體實現(xiàn)均在"utils.py"文件中體現(xiàn),在主程序中(train.py)調用即可:

最終結果保存在"results.pkl"文件內。

大功告成了么?當然沒有!?。?/p>

現(xiàn)在的詞典里有52113個詞,顯然太多了,有些詞只出現(xiàn)了一兩次,后續(xù)特征提取的時候一直空占著一個維度顯然是不明智的做法。因此,我們只保留詞頻最高的4000個詞作為最終創(chuàng)建的詞典:

最終結果保存在"wordsDict.pkl"文件內。

(3)特征提取

詞典準備好之后,我們就可以把每封信的內容轉換為詞向量了,顯然其維度為4000,每一維代表一個高頻詞在該封信中出現(xiàn)的頻率,最后,我們將這些詞向量合并為一個大的特征向量矩陣,其大小為:

(7063+7775)×4000

即前7063行為正常郵件的特征向量,其余為垃圾郵件的特征向量。

上述內容的具體實現(xiàn)仍然在"utils.py"文件中體現(xiàn),在主程序中調用如下:

最終結果保存在"fvs_%d_%d.npy"文件內,其中第一個格式符代表正常郵件的數(shù)量,第二個格式符代表垃圾郵件的數(shù)量。

(4)訓練分類器

我們使用scikit-learn機器學習庫來訓練分類器,模型選擇樸素貝葉斯分類器和SVM(支持向量機):

(5)性能測試

利用測試數(shù)據(jù)集對模型進行測試:

結果如下:

可以發(fā)現(xiàn)兩個模型的性能是差不多的(SVM略勝于樸素貝葉斯),但SVM更傾向于向垃圾郵件的判定。

That's all~

完整源代碼請參見相關文件。


更多

沒有具體介紹模型原理,因為后續(xù)可能會出一個系列,比較完整詳細地介紹一下機器學習里的常用算法。所以,就先這樣吧~

0 人點贊